

January 2018

General Purpose Analog & RF Division Power Management

Quality and Reliability

REL.6088-040.18W

Qualification New Die / Layout optimization on L78xx – HBIP40V L7805ABV - XA05

General Information

Product Line XA0501

Product Description 1.5 A positive voltage

P/N regulators L7805ABV Product Group AMG

Product division GENERAL PURPOSE

ANALOG & RF

Package TO220 - SINGLE GAUGE

Silicon Process technology BiP HF Process Family HBIP40V

Production mask set rev. LX00C REV A for DIE

CODE: PXA

Maturity level step 30

Locations

Wafer fab SINGAPORE Ang Mo Kio

Assembly plant SHENZHEN B/E

Reliability Lab Catania

Reliability assessment Pass

DOCUMENT INFORMATION

	Version	Date	Pages	Prepared by	Approved by	Comment
Ī	1.0	January 2018	8	Alfio Rao	Giovanni Presti	Final Report
	1.1	August 2019	8	Alfio Rao	Sergio Spampinato	Objective review

Note: This report is a summary of the reliability trials performed in good faith by STMicroelectronics in order to evaluate the potential reliability risks during the product life using a set of defined test methods.

This report does not imply for STMicroelectronics expressly or implicitly any contractual obligations other than as set forth in STMicroelectronics general terms and conditions of Sale. This report and its contents shall not be disclosed to a third party without previous written agreement from STMicroelectronics.

life.augmented

AMG (Analog & MEMS Group)

January 2018

General Purpose Analog & RF Division Power Management

Quality and Reliability

REL.6088-040.18W

TABLE OF CONTENTS

1	APPLICABLE AND REFERENCE DOCUMENTS	3
	GLOSSARY	
	RELIABILITY EVALUATION OVERVIEW	
	3.1 OBJECTIVES	
	3.2 CONCLUSION	3
4	DEVICE CHARACTERISTICS	4
	4.1 Device description	4
	4.2 CONSTRUCTION NOTE	4
5	TESTS RESULTS SUMMARY	
	5.1 TEST VEHICLE	5
	5.2 TEST PLAN AND RESULTS SUMMARY	5
6	ANNEXES	6
	6.1 Device details	
	6.2 Tests Description	8

General Purpose Analog & RF Division Power Management

Quality and Reliability

January 2018

REL.6088-040.18W

1 APPLICABLE AND REFERENCE DOCUMENTS

Document reference	Short description
JESD47	Stress-Test-Driven Qualification of Integrated Circuits

2 GLOSSARY

DUT	Device Under Test
SS	Sample Size

3 RELIABILITY EVALUATION OVERVIEW

3.1 Objectives

Qualification of a new die layout optimization for L78xx series (5V, 12V and 15V Output Voltage versions) in HBIP40V Technology.

The change mainly consists in EWS trimming structure removal, resulting in a die size optimization. In details, the Test Vehicle used for the qualification is L7805ABV - XA05 assembled in TO220 package.

3.2 Conclusion

Qualification Plan requirements have been fulfilled without exception. It is stressed that reliability tests have shown that the devices behave correctly against environmental tests (no failure). Moreover, the stability of electrical parameters during the accelerated tests demonstrates the ruggedness of the products and safe operation, which is consequently expected during their lifetime.

January 2018

General Purpose Analog & RF Division Power Management

Quality and Reliability

REL.6088-040.18W

4 DEVICE CHARACTERISTICS

4.1 Device description

The L78 series of three-terminal positive regulators is available in TO-220, TO-220FP, D2PAK and DPAK packages and several fixed output voltages, making it useful in a wide range of applications.

These regulators can provide local on-card regulation, eliminating the distribution problems associated with single point regulation. Each type embeds internal current limiting, thermal shut-down and safe area protection, making it essentially indestructible. If adequate heat sinking is provided, they can deliver over

1 A output current. Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltage and currents.

4.2 Construction note

	P/N: L7805ABV					
Wafer/Die fab. information						
Wafer fab manufacturing location	SINGAPORE Ang Mo Kio					
Technology	BiP HF					
Process family	HBIP40V					
Die finishing back side	CHROMIUM/NICKEL/SILVER					
Die size	1,310, 1,470 micron					
Passivation type	P-VAPOX/NITRIDE					
Wafer Testing (EWS) information						
Electrical testing manufacturing location	Ang Mo Kio EWS					
Tester	ETS300					
Test program	XA051B601					
Assembly information						
Assembly site	SHENZHEN B/E					
Package description	TO220 - SINGLE GAUGE					
Molding compound	Ероху					
Frame material	FRAME TO220 SG LCC Ve1 OpE/F3/G3 Bare Cu					
Die attach material	Ероху					
Wires bonding materials/diameters	WIRE Cu D2 BL40-55g EL15-25% 500m					
Final testing information						
Testing location	SHENZHEN B/E					
Tester	QT200					
Test program	XL05_01.cts #FA05					

January 2018

General Purpose Analog & RF Division Power Management

Quality and Reliability

REL.6088-040.18W

5 TESTS RESULTS SUMMARY

5.1 Test vehicle

Lot #	Diffusion Lot	Assy Lot	Technical Code	Package	Product Line	Part number
1	V6723T4T	GK7360VD	V3)K*XA051B6	TO220 - SINGLE GAUGE	XA05	L7805ABV

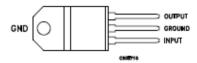
5.2 Test plan and results summary

P/N: L7805ABV

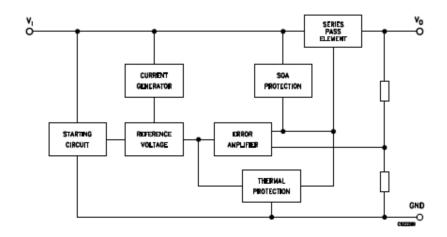
P/N: L/C	Failure/SS								
Test		Std ref.	Conditions	SS	Steps	Lot 1	Note		
Die Orie	Die Oriented Tests								
		IEODOO	Tj = 125°C, BIAS 35 V		168 h	0/77			
HTOL		JESD22 A-108		77	500 h	0/77			
		A-106			1000 h	0/77			
		JESD22	Ta = 150°C		168 h	0/45			
HTSL		A-103		45	500 h	0/45			
		A-103			1000 h	0/45			
Package	0 e	riented Tests		_					
AC		JESD22 A-102	Pa=2Atm / Ta=121°C	77	168 h	0/77			
		JESD22 A-104	Ta = -65°C to 150°C		100 cy	0/77			
TC				77	200 cy	0/77			
					500 cy	0/77			
	JESD22			168 h	0/77				
THB		A-101	Ta = 85°C, RH = 85%, BIAS 24 V	77	500 h	0/77			
		A-101			1000 h	0/77			
Other Tests									
		JESD22-A114	НВМ	3	+/-2000V	Pass			
ESD		JESD22-C101	CDM	3	+/-500V	Pass			

January 2018

General Purpose Analog & RF Division Power Management


Quality and Reliability

REL.6088-040.18W

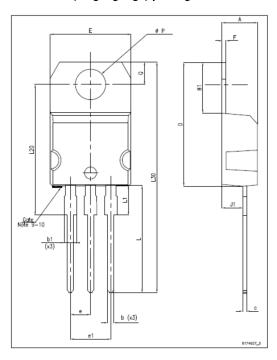

6 ANNEXES

6.1 <u>Device details</u>

6.1.1 Pin connection

6.1.2 Block diagram

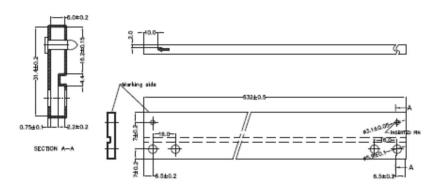
General Purpose Analog & RF Division Power Management


Quality and Reliability

REL.6088-040.18W

6.1.3 Package outline/Mechanical data

TO-220 (single gauge) package information


TO-220 (single gauge) package outline

TO-220 (single gauge) mechanical data

	mm						
Dim.	Min.	Тур.	Max.				
Α	4.40		4.60				
b	0.61		0.88				
b1	1.14		1.70				
С	0.48		0.70				
D	15.25		15.75				
E	10.00		10.40				
e	2.40		2.70				
e1	4.95		5.15				
F	0.51		0.60				
H1	6.20		6.60				
J1	2.40		2.72				
L	13.00		14.00				
L1	3.50		3.93				
L20		16.40					
L30		28.90					
ØP	3.75		3.85				
Q	2.65		2.95				

Tube for TO-220 (single gauge) (mm.)

January 2018

General Purpose Analog & RF Division Power Management

Quality and Reliability

REL.6088-040.18W

6.2 Tests Description

Test name	Description	Purpose
Die Oriented		
HTOL High Temperature Operating Life	The device is stressed in static or dynamic configuration, approaching the operative max. absolute ratings in terms of junction temperature and bias condition.	To determine the effects of bias conditions and temperature on solid state devices over time. It simulates the devices' operating condition in an accelerated way. The typical failure modes are related to, silicon degradation, wire-bonds degradation, oxide faults.
HTSL High Temperature Storage Life	The device is stored in unbiased condition at the max. temperature allowed by the package materials, sometimes higher than the max. operative temperature.	To investigate the failure mechanisms activated by high temperature, typically wirebonds solder joint ageing, data retention faults, metal stress-voiding.
Package Oriented		
AC Auto Clave (Pressure Pot)	The device is stored in saturated steam, at fixed and controlled conditions of pressure and temperature.	To investigate corrosion phenomena affecting die or package materials, related to chemical contamination and package hermeticity.
TC Temperature Cycling	The device is submitted to cycled temperature excursions, between a hot and a cold chamber in air atmosphere.	To investigate failure modes related to the thermo-mechanical stress induced by the different thermal expansion of the materials interacting in the die-package system. Typical failure modes are linked to metal displacement, dielectric cracking, molding compound delamination, wire-bonds failure, die-attach layer degradation.
THB Temperature Humidity Bias	The device is biased in static configuration minimizing its internal power dissipation, and stored at controlled conditions of ambient temperature and relative humidity.	To evaluate the package moisture resistance with electrical field applied, both electrolytic and galvanic corrosion are put in evidence.
Other		
ESD Electro Static Discharge	The device is submitted to a high voltage peak on all his pins simulating ESD stress according to different simulation models. CDM: Charged Device Model	To classify the device according to his susceptibility to damage or degradation by exposure to electrostatic discharge.